首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25084篇
  免费   2882篇
  国内免费   2799篇
电工技术   924篇
技术理论   1篇
综合类   3175篇
化学工业   2631篇
金属工艺   917篇
机械仪表   463篇
建筑科学   9869篇
矿业工程   1751篇
能源动力   1006篇
轻工业   1686篇
水利工程   3351篇
石油天然气   853篇
武器工业   81篇
无线电   780篇
一般工业技术   1141篇
冶金工业   1007篇
原子能技术   196篇
自动化技术   933篇
  2024年   42篇
  2023年   334篇
  2022年   686篇
  2021年   827篇
  2020年   821篇
  2019年   739篇
  2018年   695篇
  2017年   810篇
  2016年   884篇
  2015年   912篇
  2014年   1608篇
  2013年   1408篇
  2012年   1898篇
  2011年   2060篇
  2010年   1542篇
  2009年   1668篇
  2008年   1451篇
  2007年   1869篇
  2006年   1718篇
  2005年   1669篇
  2004年   1341篇
  2003年   1107篇
  2002年   899篇
  2001年   667篇
  2000年   566篇
  1999年   477篇
  1998年   378篇
  1997年   304篇
  1996年   249篇
  1995年   240篇
  1994年   183篇
  1993年   119篇
  1992年   114篇
  1991年   81篇
  1990年   72篇
  1989年   56篇
  1988年   45篇
  1987年   41篇
  1986年   35篇
  1985年   23篇
  1984年   27篇
  1983年   12篇
  1982年   12篇
  1981年   13篇
  1980年   8篇
  1979年   38篇
  1975年   2篇
  1973年   4篇
  1959年   3篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The development of efficient filters is an essential part of industrial machinery design, specifically to increase the lifespan of a machine. In the filter chamber design considered in this study, the magnetic material is placed along the horizontal surface of the filter chamber. The inside of the filter chamber is layered with a porous material to restrict the outflow of unwanted particles. This study aims to investigate the flow, pressure, and heat distribution in a dilating or contracting filter chamber with two outlets driven by injection through a permeable surface. The proposed model of the fluid dynamics within the filter chamber follows the conservation equations in the form of partial differential equations. The model equations are further reduced to a steady case through Lie's symmetry group of transformation. They are then solved using a multivariate spectral-based quasilinearization method on the Chebyshev–Gauss–Lobatto nodes. Insights and analyses of the thermophysical parameters that drive optimal outflow during the filtration process are provided through the graphs of the numerical solutions of the differential equations. We find, among other results, that expansion of the filter chamber leads to an overall decrease in internal pressure and an increase in heat distribution inside the filter chamber. The results also show that shrinking the filter chamber increases the internal momentum inside the filter, which leads to more outflow of filtrates.  相似文献   
2.
《Ceramics International》2022,48(13):18658-18666
Samples of the ternary system MgO–Al2O3–SiO2 with stoichiometric composition in relation to α-cordierite (Mg2Al4Si5O18), consisting of 22.2 mol% MgO, 22.2 mol% Al2O3, and 55.6 mol% SiO2, were activated in a low energy mill with a constant speed of 100 rpm, in an aqueous medium. The precursors used were corundum (Al2O3), silica gel HF254 type 60 (SiO2), and periclase (MgO). The objective of the present study was to evaluate the effect of mechanochemical activation on the solid-state synthesis of α-cordierite, using a low energy ball mill. Another objective was to shed light on the effect of mechanochemical activation on the steps of α-cordierite formation. For this end several grinding conditions were evaluated, varying the time and mass ratio of precursors/grinding elements, as well as calcination at different temperatures between 950 °C and 1350 °C for 2 h. The samples were analyzed for the determination of the formed phases by Infrared (IR) and X-ray Diffraction (XRD). The phases identified in uncalcined samples were brucite (Mg(OH)2), forsterite (Mg2SiO4), enstatite (MgSiO3), spinel (MgAl2O3), amorphous silica (SiO2), corundum (α-Al2O3), and zirconia (monoclinic and tetragonal ZrO2). The lowest temperature corresponding to the formation of α-cordierite (α-Mg2Al4Si5O18) was 1150 °C and a considerable amount of this phase (16.2%) was observed at this temperature, for the sample with the higher mechanochemical activation. In a solid-state reaction, α-cordierite is normally obtained at around 1400 °C, therefore, the formation of this phase at 1150 °C confirms that the mechanochemical activation method, using a low-cost ball mill, is efficient in reducing the solid-state reaction temperature.  相似文献   
3.
Flow phenomena of three-dimensional conducting Casson fluid through a stretching sheet are proposed in the present investigation with the impact of the magnetic parameter in a permeable medium. The adaptation of particular transformations is useful to modify the governing equations into their nondimensional as well as the ordinary form. However, these transformed equations are nonlinear and approximate analytical methods for the solution of the complex form of governing equations. In particular, the Adomian decomposition method is proposed for the solution. The behavior of several variables, such as the magnetic and porous matrix, on the flow profile as well as the rate of shear stress, are discussed via graphs and tables. The conformity of the current result with the earlier study shows a road map for further investigation. The major concluding remarks are; the retardation in the velocity distribution is rendered due to an increase in the Casson parameter moreover, the Casson parameter favors in reducing the rate of shear stress coefficient in magnitude.  相似文献   
4.
用块状渣土置换软弱地基和回填低洼谷地等是处置工程渣土的有效途径。为了分析饱和块状混合回填土地基的固结性状,运用混合物理论建立了其一维固结模型。首先,假定块状土固相和充填土固相之间满足等应变条件,获得了饱和块状混合回填土中各相应变与块状土孔隙变形和充填土孔隙变形的关系式。其次,在小应变条件下,根据自由能势函数方程建立了饱和块状混合回填土的一维线弹性本构方程,再结合达西定律和应力平衡方程获得了一维固结控制方程。再次,利用分离变量法得到一维固结解析解,通过退化本文模型与已有模型进行对比,验证了本文模型的正确性。最后,基于所得解析解,分析了充填土孔隙渗透系数、块状土孔隙渗透系数以及流体交换参数等因素对饱和块状混合回填土地基固结性状的影响。分析结果表明:充填土孔隙渗透系数对饱和块状混合回填土地基整体固结性状起主导作用;在固结初期,块状土超孔压会有一定程度的上升,且3个参数具有相似的作用机理。  相似文献   
5.
《Soils and Foundations》2022,62(6):101224
Internal erosion is a major threat to hydraulic earth structures, such as river levees and dams. This paper focuses on suffusion and suffosion phenomena which are caused by the movement of fine particles in the granular skeleton due to seepage flow. The present study investigates the impact of internal erosion on the dynamic response under cyclic torsional shear and monotonic responses under triaxial compression and torsional simple shear. A series of experiments, using a gap-graded silica mixture with a fines content of 20%, is performed under loose, medium, and dense conditions using a novel erosion hollow cylindrical torsional shear apparatus. The erosion test results indicate that the critical hydraulic gradient and the rate of erosion are density-dependent, where a transition from suffosion to suffusion is observed as the seepage continues. Regardless of the sample density, variations in the radial strain and particle size distribution, along the specimen height after erosion, are no longer uniform. Furthermore, the dynamic shearing results show that the small-strain shear modulus increases, but the initial damping ratio decreases after internal erosion, probably due to the removal of free fines. In addition, the elastic threshold strain and reference shear strain values are found to be higher for the eroded and non-eroded specimens, respectively. Finally, based on drained monotonic loading, the post-erosion peak stress ratio increases remarkably under triaxial compression, while that under torsional simple shear depends on the relative density where the direction of loading is normal to the direction of seepage. These observations indicate that the horizontal bedding plane becomes weaker, while the vertical one becomes stronger after downward erosion.  相似文献   
6.
Internal stability assessment of geosynthetic-reinforced soil structures (GRSSs) has been commonly carried out assuming plane-strain conditions and dry backfills. However, failures of GRSSs usually show three-dimensional (3D) features and occur under unsaturated conditions. A procedure based on the kinematic limit-analysis method is proposed herein to assess 3D effects and the role of steady unsaturated infiltration on the required geosynthetic strength for GRSSs. A suction stress-based framework is used to describe the soil stress behavior under steady unsaturated infiltration. Based on the principle of energy-work balance, the required geosynthetic strength is determined. A comparison analysis with the prior research is conducted to verify the developed method. Two kinds of backfills, i.e., high-quality backfill and marginal backfill, are considered for comparison in this work. It is shown that accounting for 3D effects and the role of unsaturated infiltration considerably reduces the required geosynthetic strength. The 3D effects are primarily affected by the width-to-height ratio of GRSSs, and the contribution of unsaturated infiltration is mainly influenced by the soil type, flow rate, GRSS's height, and location of the water table.  相似文献   
7.
Soil column is often investigated in the improvement of dredged slurries. Different from the smear zone, the soil column forms gradually and has extremely low permeability. This study presents an analytical solution for soil consolidation considering the increasing radius of the soil column and time-dependent discharge capacity. Based on the solution, the influence of the radius' increase on the consolidation behavior is found significant when the soil column has low permeability and large final radius, and the increase of formation time can lead to the increase of consolidation speed and final consolidation degree.  相似文献   
8.
This paper presents an experimental study on reduced-scale model tests of geosynthetic reinforced soil (GRS) bridge abutments with modular block facing, full-height panel facing, and geosynthetic wrapped facing to investigate the influence of facing conditions on the load bearing behavior. The GRS abutment models were constructed using sand backfill and geogrid reinforcement. Test results indicate that footing settlements and facing displacements under the same applied vertical stress generally increase from full-height panel facing abutment, to modular block facing abutment, to geosynthetic wrapped facing abutment. Measured incremental vertical and lateral soil stresses for the two GRS abutments with flexible facing are generally similar, while the GRS abutment with rigid facing has larger stresses. For the GRS abutments with flexible facing, maximum reinforcement tensile strain in each layer typically occurs under the footing for the upper reinforcement layers and near the facing connections for the lower layers. For the full-height panel facing abutment, maximum reinforcement tensile strains generally occur near the facing connections.  相似文献   
9.
As a new type of material for civil engineering projects, the rubber and sand mixture is widely used in roadbed fillers, offering environmental benefits over traditional tyre disposal methods. This study uses a large-scale direct shear apparatus to examine the interface shear properties of the geogrid-reinforced rubber and sand mixture, considering different particle size ratios (r), rubber contents, and normal stresses. Based on indoor tests, direct shear models of the mixture with different values of r are established in PFC3D, revealing the meso-mechanical mechanism of the mixture in the direct shear process. The results show that when r is greater than 1, incorporating a certain amount of rubber particles can increase the shear strength of the mixture. The r values of 15.78, 7.63, and 3.98 correspond to an optimal rubber content of 30%, 10%, and 20%, respectively. When r is less than 1, mixing rubber particles can only reduce the shear strength of the mixture. When the rubber content is low, the smaller the value of r, the greater is the thickness of the shear band. Furthermore, the normal and tangential contact forces are greater. The fabric anisotropy evolution law of the mixture is consistent with the change in the contact force distribution.  相似文献   
10.
The freeze–thaw cycling damages the soil structure, and the shear performance of soil are degraded. A series of tests on lime–soil(L–S) and fiber–lime–soil(F–L–S), including freeze–thaw test, the triaxial compression test, nuclear magnetic resonance (NMR) test and scanning electron microscope (SEM) test, were completed. The test results showed that fiber reinforcement changed the stress–strain behavior and failure pattern of soil. The cohesion and internal friction angle of soil gradually decreased with the increase of freeze–thaw cycles (F–T cycles). The pore radius and porosity of soil increased, while the micro pore volume decreased, and the small pore volume, medium pore volume and large pore volume increased, and the large pore volume had a little variation after 10 F–T cycles. The number of pores of F–L–S was less than L–S, demonstrating that the addition of fiber helped to reduce the pore volume. The interweaved fibers limited the development and the connection of cracks. By means of the spatial restraint effect of fiber on the soil and the friction action between fiber and soil, the shear performances and freeze–thaw durability of F–L–S better were than that of L–S.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号